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rug research and development have recently been
ampered by high costs,1 notably high investigational
ew drug (IND) failure rates2 and multiple new drug
pplication (NDA) review cycles.3 The number of ap-
lications for new molecular entities submitted to the
ood and Drug Administration (FDA) has declined
teadily.4 As part of the FDA’s strategic plan,5 the FDA
s developing standards to apply emerging technologies
eg, pharmacogenomics) to provide effective transla-
ion of new scientific discoveries into safe and effective
edical products. A recent document by the FDA

tressed the following4: “The product development
roblems we are seeing today can be addressed, in part,
hrough an aggressive, collaborative effort to create a
ew generation of performance standards and predic-
ive tools. The new tools will match and move forward
ew scientific innovations and will build on knowledge
elivered by recent advances in science, such as bioin-
ormatics, genomics, imaging technologies, and mate-
ials science.” There are various initiatives within the
enter for Drug Evaluation and Research to address

ssues in the area of pharmacogenomics. A guidance for
ndustry on genomic data submission has been pub-
ished.6,7 The guidance was intended to encourage vol-

ntary genomic data submission by sponsors using
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harmacogenomics in exploratory research during drug
evelopment and to clarify under what circumstances
enomic data submission is required. For example, the
uidance discusses when to submit genomic biomarker
ata, on the basis of how the biomarker is used during
he IND/NDA phase and the status of the biomarker
whether it is a “known valid,” “probable valid,” or
exploratory” biomarker). A workshop was held in
ovember 2003 to discuss issues related to genomic
ata submissions, and the proceedings have been
ublished.8-11 In addition to the guidance on genomic
ata submissions, the FDA is developing a new guid-
nce for drug-test combinations when a deoxyribonu-
leic acid–based test is used before a drug is pre-
cribed. Another public workshop was held in July
004 to identify issues in the development of these
ombination products,12 and a concept paper was pub-
ished.13

With the increasing knowledge and available tools in
harmacogenomics, the FDA will continue to encour-
ge genomics-based research and the translation of the
esultant scientific data to clinical practice.14-16 On the
asis of the FDA guidance,6,7 data generated related to
enomic biomarkers will need to be submitted for re-
iew in the NDA, with various reporting formats (full
eport, abbreviated report, or synopsis) that depend on
he purpose of the genomic evaluation and the validity
f the genomic biomarker.6,7 The type of genomic data
eg, which alleles, what genotypes) that need to be
valuated is one of the critical issues in drug develop-
ent and regulatory review17 and is the subject of this

ommentary. Consideration of racial or ethnic differ-
nces in the distribution of various alleles with no or
educed metabolic activity in the evaluation of dose-
esponse relationships is also discussed.

EVIEW OF CLINICAL PHARMACOLOGY
ND LABELING
To optimize drug therapy and reduce adverse events,

t is critical that information on how various intrinsic
actors (age, gender, race, genetics, and others) and
xtrinsic factors (concomitant medication and
thers)18,18a may affect drug treatment be available for
ealth care providers and patients. When a drug is
eing developed, variability in drug response and the
actors contributing to it should be investigated, and
his information should be included in the labeling.
etailed data are included in the “important clinical
harmacology findings” section, and key results are
ummarized in the “executive summary” section of the
linical pharmacology review.19 For example, changes

n pharmacokinetic parameters reflecting systemic ex- s
osure, such as area under the plasma concentration–
ime curve (AUC) or maximum plasma concentration,
s a result of various extrinsic and intrinsic factors may
e summarized and displayed in graphic or table forms.
he clinical significance of altered systemic exposure

esulting from these factors, including genetics, de-
ends on the concentration-response relationships for
oth efficacy and toxicity.20 If the concentration-
esponse relationship is well described, knowledge of
he effects of genotype, an intrinsic factor, can lead to
ational adjustment of dose or dosing interval or to
ppropriate warnings and precautions. For example, the
abeling of atomoxetine (Strattera; Eli Lilly & Co,
ndianapolis, Ind), thioridazine (Mellaril; Novartis
harmaceutical Corp, East Hanover, NJ), voriconazole
Vfend; Pfizer, New York, NY), 6-mercaptopurine (Pu-
inethol; Gate Pharmaceutical, Sellerville, Pa), and iri-
otecan (Camptosar; Pharmacia & Upjohn, Kalama-
oo, Mich) contains information about the genetics of
etabolizing enzymes (eg, cytochrome P450 [CYP]

nzymes CYP2D6 and CYP2C19, thiopurine
-methyltransferase, and uridine diphosphate–glucu-
onosyltransferase [UGT] 1A1) that are responsible for
he elimination of these drugs to warn about genetic
ariation in drug disposition (Table I).21

PPLICATIONS OF PHARMACOGENETICS
ND PHARMACOGENOMICS IN DRUG
EVELOPMENT AND REGULATORY
EVIEW
A recent internal, informal survey of the IND and

DA submissions received at the Center for Drug
valuation and Research indicated that, of the 70 sub-
issions with pharmacogenomic data received between

992 and 2001, many evaluated the status of drug-
etabolizing enzymes, with CYP2D6 being the most

requent. Fig 1 depicts the distribution of submissions
valuating various polymorphic enzymes.22 Many of
he submissions received between 1992 and 1999 used
henotyping (eg, urinary metabolic ratios of dextro-
ethorphan and dextrorphan) to estimate CYP2D6 ac-

ivity. Most of the later submissions (received between
000 and 2001) used genotyping.
A number of enzymes listed in Fig 1, including

YP2D6, CYP2C9, CYP2C19, and UGT1A1, are
known valid” metabolizing enzyme biomarkers. A
nown valid biomarker is defined as being measured in
n analytic test system with well-established perfor-
ance characteristics and for which there is widespread

greement in the medical or scientific community about
he physiologic, toxicologic, pharmacologic, or clinical

ignificance of the results.6,7 Fig 1 also includes en-
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able I. Examples of pharmacogenomic information regarding drug-metabolizing enzymes in drug label21,215,216

Brand name and
generic name

Labeling
section Labeling statement

Purinethol
(6-mercaptopurine)
(July 2004
labeling)

Warnings Individuals who are homozygous for an inherited defect in the thiopurine
S-methyltransferase gene may be unusually sensitive to the
myelosuppressive effects of mercaptopurine and prone to the
development of rapid bone marrow suppression after the initiation of
treatment. . . (see Dosage and administration section).

Dosage and
administration

Patients with little or no inherited thiopurine S-methyltransferase activity
are at increased risk for severe Purinethol toxicity from conventional
doses of mercaptopurine and generally require substantial dose reduction.
The optimal starting dose for homozygous deficient patients has not been
established (see Clinical pharmacology and Warnings and precautions
sections).

Vfend
(voriconazole)
(April 2004
labeling)

Clinical
pharmacology

In vivo studies indicated that CYP2C19 is significantly involved in the
metabolism of voriconazole. This enzyme exhibits genetic polymorphism.
For example, 15% to 20% of Asian populations may be expected to be
PMs. For white subjects and black subjects, the prevalence of PMs is 3%
to 5%. Studies conducted in white and Japanese healthy subjects have
shown that PMs have, on average, 4-fold higher voriconazole exposure
(AUC�) than their homozygous EM counterparts. Subjects who are
heterozygous EMs have, on average, 2-fold higher voriconazole exposure
compared with their homozygous EM counterparts.

Mellaril
(thioridazine)
(July 2003
labeling)

Contraindications Thioridazine is contraindicated . . . in patients, comprising about 7% of the
normal population, who are known to have a genetic defect leading to
reduced levels of activity of CYP2D6 (see Warnings and precautions
section).

Strattera
(atomoxetine)
(March 2003
labeling)

Drug-drug
interactions

In EMs inhibitors of CYP2D6 increase atomoxetine steady-state plasma
concentrations to exposures similar to those observed in PMs. Dosage
adjustment of Strattera in EMs may be necessary when coadministered
with CYP2D6 inhibitors (eg, paroxetine, fluoxetine, and quinidine) (see
Drug interactions section under “Precautions”). In vitro studies suggest
that coadministration of CYP inhibitors to PMs will not increase the
plasma concentrations of atomoxetine.

Laboratory
tests

With regard to CYP2D6 metabolism, PMs of CYP2D6 have a 10-fold
higher AUC and a 5-fold higher peak concentration to a given dose of
Strattera compared with EMs. Approximately 7% of the white population
are PMs. Laboratory tests are available to identify CYP2D6 PMs. The
blood levels in PMs are similar to those attained by taking strong
inhibitors of CYP2D6. The higher blood levels in PMs lead to a higher
rate of some adverse effects of Strattera (see Adverse reactions section).

Camptosar
(irinotecan)

Clinical
pharmacology,
warning,
and
dosage
and
administration

Patients who were homozygous for UGT1A1*28 had a higher exposure to
SN-38 than patients with the wild-type UGT1A1 allele. Individuals
homozygous for the UGT1A1*28 allele are at increased risk for
neutropenia after Camptosar administration. A reduction in the starting
dose by 1 level may be considered in patients aged �65 y, prior
radiotherapy, performance status 2, increased bilirubin levels. A reduction
in the starting dose by at least 1 level of Camptosar should be considered
for patients known to be homozygous for the UGT1A1*28 allele. . . . The
appropriate dose reduction in this patient population is not known.
For additional information on thiopurine S-methyltransferase, see references 215 and 216.
EM, Extensive metabolizer; PM, poor metabolizer; AUC, area under plasma concentration–time curve; UGT, uridine diphosphate–glucuronosyltransferase.
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ymes, transporters, and receptors or proteins that have
ot reached the “valid” biomarker status and are con-

Fig 2. Genomic

Fig 1. Distribution of pharmacogenetic-pharm
genotypes and phenotypes of CYP2D6, CY
metabolizing enzymes, transporters, or rec
(MDR1)] gene product P-glycoprotein, uridine
transferases and proteins) on the new drug’s
safety measures for 70 investigational new
submitted between 1992 and 2001.22
idered “exploratory” biomarkers. For example, for h
ome genes (eg, CYP3A4), the correlation between
ertain genotypes and enzyme or transporter activities

re for CYP2C9.

mic studies evaluating the impact of different
CYP2C9, CYP3A, and CYP1A2 and other
including ABCB1 [multidrug resistance 1
hate–glucuronosyltransferase 1A1, and other
cokinetics, pharmacodynamics, or efficacy-
INDs) and new drug applications (NDAs)
acogeno
P2C19,
eptors (
diphosp
pharma
drugs (
as been observed in vitro only.23 For others (eg,
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BCB1), contradictory data have been published for
ifferent drugs and the correlation between single-
ucleotide polymorphism (SNP) genotype or haplotype
nd the phenotype (pharmacokinetic parameters, other
esponse measures) will need to be further defined. For
any of these genes, the relationship between in vitro

nd in vivo phenotype data, in vivo genotype-
henotype correlations, the ethnic distribution of major
lleles, and recommendations for specific alleles that
ight be genotyped in regulatory studies are discussed

ater.

YP2C9
The CYP2C9 gene is located at chromosomal posi-

ion 10q24 in a multigene cluster consisting of other
YP2C subfamily members including CYP2C18,
YP2C19, and CYP2C8 assembled as shown in Fig 2.24

he CYP2C9 gene spans some 55 kilobases and con-
ists of 9 exons that encode a 490–amino acid protein.
he clinically relevant genes, CYP2C19, CYP2C9, and
YP2C8, are highly homologous at the nucleotide

evel. These genes also exhibit genetic polymorphisms,
hich confer important clinical differences in the me-

abolism of known CYP2C substrates. The high degree
f homology can introduce complexities in gene-based
ssays, yet critical primer design enables comprehen-
ive evaluation of the genetic differences present in
ndividuals.

The CYP2C9 protein represents the primary CYP2C
rotein present in the human liver and accounts for
pproximately 20% of the hepatic CYP content.25

YP2C9 plays a major role in the metabolism of nu-
erous therapeutics including the antidiabetics glipiz-

de and tolbutamide, the anticonvulsant phenytoin, the
ngiotensin II receptor antagonist losartan, the 3-
ydroxy-3-methylglutaryl– coenzyme A reductase
nhibitor fluvastatin, many nonsteroidal anti-
nflammatory agents, and the commonly administered
nticoagulant warfarin.

In vitro and in vivo correlations. Individual varia-
ion within the CYP2C9 gene locus has been charac-
erized because of the importance of this enzyme in the
etabolism of common medicines. The variant forms

re defined in Table II. The most common variants,
YP2C9*2 and *3, represent the predominant alleles
ith clinical consequences. In contrast to the CYP2D6
oor metabolizer (PM) alleles, which result in nonfunc-
ional alleles, the proteins encoded by the CYP2C9
llelic variants exhibit differing affinity (Michaelis-
enten constant) or intrinsic clearance (maximum

elocity/Michaelis-Menten constant) for differing sub-

trates. This is exemplified by the CYP2C9*2 allele, 1
hich results in impaired 6-/7-hydroxylation of S-war-
arin; small effects, if any, on maximum velocity for
olbutamide; and no effect on the methyl hydroxylation
f torsemide (INN, torasemide). Whereas CYP2C9*2
ffects appear to be more substrate-specific, the
YP2C9*3 variants demonstrate reduced catalytic ac-

ivity across the majority of CYP2C9 substrates, with
owered maximum catalytic rates or lower affinity for
ubstrates in general.

Clinical relevance. An important clinical conse-
uence of CYP2C9 polymorphic variation is demon-
trated by the individual differences in the metabolism
f warfarin, a common oral anticoagulant. Individuals
eceiving warfarin therapy often demonstrate difficul-
ies in initial dosing predictions, as well as maintenance
osing regimens. The in vivo consequences of the
YP2C9 genotype and dosing requirements were doc-
mented by Aithal et al31 in a study examining patients
rom an anticoagulation clinic requiring low mainte-
ance doses of warfarin (�1.5 mg/d). In this study
ndividuals who required a low dose of warfarin to
aintain anticoagulation were about 6-fold more likely

o possess a variant allele of the CYP2C9 gene com-
ared with unselected patients receiving the same ther-
py and a control population. Furthermore, those indi-
iduals in the low-dose group had significant difficulty
n achieving optimal warfarin exposure and an in-
reased risk of bleeding events. Subsequent studies
ave confirmed the important relationship between
YP2C9 genotype and warfarin dosing, anticoagulation
ffects, and bleeding events.32,33

What alleles to measure. The CYP2C9 allele fre-
uencies have been well characterized in the major
thnic groups, with the 2 most common polymorphisms
eing identified as the *2 and *3 alleles. The
YP2C9*2 allele occurs at an allelic frequency of ap-
roximately 10% in white subjects and 2% to 4% in
lack subjects and has not been seen in the Asian
opulations examined. The CYP2C9*3 allele occurs at
n allele frequency of 8% in white subjects, less than

able II. Nomenclature for CYP2C9 alleles26-30

CYP2C9 allele Effect of nucleotide change Reference

*1 Wild type
*2 Arg144Cys 26
*3 Ile359Leu 27
*4 Ile359Thr 28
*5 Asp360Glu 29
*6 Del Aden818 30
% in black subjects, and approximately 2% in Asians.
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ther identified CYP2C9 alleles occur at significantly
educed frequencies, including the Ile359Thr *4 allele
dentified in Japanese subjects and the Asp360Glu *5
nd Del *6 alleles identified in black subjects.

Whereas research studies on metabolic differences
mparted by genetic variation in CYP family members
ave often focused on coding regions of these genes,
he contributions of genetic variation within regulatory
egions are beginning to be appreciated. Recently,
hintani et al34 characterized the impact of 7 SNPs

ocated in the upstream regulatory region of the
YP2C9 gene. Combinations of these SNPs have been
haracterized in promoter/reporter constructs trans-
ected into cells and demonstrate reduced gene tran-
cription of the reporter gene, suggesting that CYP2C9
romoter variation may also play a role in reduced
etabolism of substrates. Further studies are required

o define the in vivo consequences of these common
ariants.
Conclusions. In considering substrates of CYP2C9,

he common alleles CYP2C9*2 and *3 account for the
ajority of intersubject variation. These common al-

eles could be routinely examined for defining the in
ivo relationships between substrate metabolism and
YP2C9 genotype. Table III lists the recommended
olymorphic alleles to measure in specific population
roups for CYP2C9, along with CYP2C19, CYP2D6,
nd UGT1A1 (which will be discussed in detail
ater).24,35-37

YP2C19
PMs of S-mephenytoin do not express CYP2C19

ecause of a defective or mutated gene.35,38-41 More
han 10 mutated alleles for CYP2C19 are known, of
hich *2 and *3 are the most common.42 Per definition,

n a PM both alleles are mutated, whereas individuals
ith 1 mutated and 1 wild-type allele (heterozygotes)
r 2 wild-type alleles (homozygotes) are extensive me-

able III. Summary of recommended polymorphic al
pecific population groups24,35-37

Enzyme
Basic alleles to measure in

all population groups

CYP2C9 *2, *3
CYP2C19 *2, *3

CYP2D6 *3, *4, *5, *6, *2xN
UGT1A1 *28

†Additional alleles to measure in this specific population group are shown,
abolizers (EMs). The PM frequency varies, with more c
Ms among Asians (approximately 15%) than among
hite subjects and black subjects (approximately
%).43 Extreme values have been reported in smaller
thnic groups such as Cuna Indians in Panama (0%)44

nd Vanuatuans in the South Pacific (approximately
0%).45 There have been indications in the literature
hat a subgroup of super-rapid metabolizers exists, sug-
esting that those may be found among nonresponders
o treatment with the CYP2C19 substrate proton pump
nhibitors (PPIs). This phenomenon may be caused by

variant of the wild-type allele.46 A wide array of
rugs are known substrates of CYP2C19.43

In vitro and in vivo correlations. Several experimen-
al settings have been used to demonstrate that in vitro
ata can be used to predict PM status in vivo. When
ifferent mutated alleles were compared with the wild-
ype allele in a bacterial expression system, good correla-
ions were found with carbon monoxide binding spectra or

estern blotting or by simply measuring the
-mephenytoin hydroxylase activity in recombinant
nzymes.47-50

In vivo genotype-phenotype correlations. There are
any good examples in vivo in which correlations

etween genotype and phenotype have been demon-
trated. A good correlation with a clear cutoff level for
Ms and PMs was found between the S/R-mephenytoin
rinary ratio or the mephenytoin hydroxylation index
nd CYP2C19 allele frequency in both Asians (Filipi-
os) and Saudis.51 The urinary excretion of cycloguanil
amoate (INN, cycloguanil embonate), the primary
hloroguanide (INN, proguanil) metabolite, as well as
he ratio between chloroguanide and cycloguanil pamo-
te in urine, also correlated with EM and PM status
etermined by CYP2C19 genotyping.52 There is a clear
orrelation between mephenytoin S/R ratio and ome-
razole metabolizer status,53 consistent with the corre-
ation between CYP2C19 genotype and omeprazole
etabolizer status (ratio between AUC or 3-hour con-

specific metabolizing biomarkers to measure in

Additional alleles relevant to specific population groups

hite† Black† Asian Americans†

*5, *6
4, *5,
6
10 (*41) *17 *10 (*21)

(*60) (*6)

ble additional alleles to measure in parentheses.
leles of

W

*
*
*

entrations of racemate omeprazole and its hydroxy
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etabolite).54,55 Like racemate omeprazole, other PPIs
uch as lansoprazole and pantoprazole are metabolized
y CYP2C19 to a similar degree56 and could, therefore,
e used for phenotyping.57 However, for mephenytoin,
hloroguanide, and PPIs, there is an overlap between
omozygous and heterozygous EMs. Because the
-omeprazole enantiomer is less dependent on
YP2C19, it is not as useful for phenotyping.
Which alleles to determine. By genotyping for *2

nd *3 alleles, one would detect 84% of PMs among
hite subjects, greater than 90% among black subjects,

nd approximately 100% among Asians.42,49,51 By also
ncluding *4 to*6 alleles, 92% of white PMs would be
etected. The number of alleles to be included in geno-
yping should be based on a cost/benefit analysis. In
ontrast to CYP2C9, all compounds identified as
YP2C19 substrates to date are metabolized equally
oorly in all PMs, irrespective of variant alleles or
thnic origin.58 The only factor that seems to determine
he difference in exposure between EMs and PMs for
YP2C19 substrates is the proportion of the drug me-

abolized by CYP2C19.56

Clinical relevance. The clinical relevance of poly-
orphic expression of CYP2C19 has to be evaluated

eparately for each drug, mainly on the basis of the
roportion of dose that is metabolized via CYP2C19 in
ombination with the therapeutic index of the drug, as
ell as the consequences of suboptimal treatment.59-83

Tricyclic antidepressants (TCAs) (eg, amitriptyline) are
artly metabolized by CYP2C19 and show higher plasma
oncentrations in PMs than in EMs.43,60-66 No direct cor-
elation between metabolizer status and adverse effect has
een demonstrated, but there is an obvious risk because
here is a correlation between plasma levels and toxic
ffect,67,68 especially if CYP2D6, the major TCA path-
ay, is compromised.69-71 Selective serotonin reuptake

nhibitors (eg, citalopram) are also partly metabolized by
YP2C19, and accordingly, higher plasma concentrations
ave been reported in PMs than in EMs.72-74

CYP2C9 is the major metabolizing enzyme for phe-
ytoin and warfarin, both with a narrow therapeutic
indow, but they are also partly metabolized by
YP2C19.76,77 Patients who are both CYP2C19 PMs
nd CYP2C9 PMs are at risk of adverse effects. Be-
ause diazepam has a wide therapeutic window, there is
o concern with the 2-fold higher exposure in PMs
ompared with EMs.78,79 Also, because the degree of
ecrease in diazepam clearance with CYP2C19 inhibi-
ion correlates with the baseline clearance, patients with
he highest exposure initially will have the least in-

rease with CYP2C19 inhibition.80 o
For PPIs, the clinical relevance is dependent on dose;
clear gene-dose effect in clinical efficacy was dem-

nstrated for 20 mg omeprazole, 10 mg rabeprazole, or
0 mg lansoprazole81-83 but not for 40 mg omeprazole,
hich provides exposure high up on the dose-response

urve (AstraZeneca, Mölndal, Sweden; data on file).
Conclusions. More than 10 different variant alleles of

YP2C19 have been detected, most of which are defec-
ive. Reliable in vitro and in vivo correlations and
enotype-phenotype correlations exist, but phenotyping
hows an overlap between heterozygous and homozygous
Ms. Bridging between ethnic groups is appropriate.
enotyping should minimally include *2 and *3 alleles
ut should also include *4 to*6 in white subjects (Table
II). To decrease the adverse effects of TCAs, doses may
eed to be decreased in PMs. To increase the efficacy of
PIs, doses may need to be increased in homozygous
Ms.

YP2D6
The simple, inherited EM and PM phenotypes of

YP2D6 that were first observed in sparteine and de-
risoquin (INN, debrisoquine) metabolism in 1977 be-
ie a gene of considerable genetic complexity.36,84,85

he PM phenotype of this enzyme results in large
ncreases of up to 15-fold in the maximum concentra-
ion and AUCs of more than 40 therapeutic agents that
re primarily metabolized by this route (for a detailed
nd referenced list, see reference 85a). These include a
umber of drugs with a narrow therapeutic range, such
s the TCAs and flecainide.86 They also include a
umber of drugs in wide use that are of considerable
herapeutic value such as the �-blockers metoprolol,
imolol, and propranolol. For these drugs, the PM phe-
otype does result in pharmacodynamic differences in
he form of lower heart rates and lower blood pressure
t the same dose.87,88 CYP2D6 is also the primary
atalyst for the metabolism of codeine to its active
etabolite, morphine,89 of tramadol to its active me-

abolite,90 and of tamoxifen citrate (INN, tamoxifen) to
ts primary active metabolite, endoxifen.91

The unusual properties of the CYP2D6 gene that com-
licate a simple approach to genotyping to predict activity
nclude the presence of 2 highly homologous pseudogenes
djacent to the coding region on chromosome 10,
YP2D7 and CYP2D8, and the existence of a genetic
ariant, the CYP2D6*5 allele,92 that results in complete
emoval of the coding sequence. In addition, multiple
opies of the entire coding sequence have been described
n a number of populations,93-95 and 13 copies of the gene
ave been described in a Swedish family.96 The presence

f multiple copies of the CYP2D6 gene within the ge-
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ome of some individuals results in a third phenotype, the
ltrarapid metabolizer phenotype.

In vitro–in vivo correlations. A total of 52 alleles of
YP2D6 had been described as of July 2005.97 Not all
f these alleles have clearly defined functional differ-
nces from the wild type. It is clear that alleles *3, *4,
5, *6, *7, *8, *11, *12, *13, *14, *15, *16, *18, *19,
20, *21, *38, *40, *42, and *44 have no activity. In
ddition, alleles *10, *17, *36, and *41 have substrate-
ependent decreased activity. At this time, none of the
lleles that are not multiple copies but appear to have
ncreased activity in vitro seem to have increased en-
yme activity in vivo.

It is consistent with the high incidence of the ultra-
apid metabolizer phenotype in East Africa (13.6%)97

hat multiple copies of the CYP2D6 *1, *2, *4, *9, and
41 alleles have been reported in African and other
opulations. The allelic incidence of these high-copy-
umber alleles varies among populations, with 1.9% in
lack subjects,98 0.5% in Japanese subjects,99 and 3.3%
n Tanzanian subjects.100

The relative simplicity of genotype determination
as encouraged a large number of investigators to at-
empt to use genetic approaches to better predict the
henotype of patients within the EM phenotype. To this
nd, a number of valuable probe drugs that appear to
se this metabolic pathway as a primary route of elim-

ig 3. Allelic frequencies of CYP2D6 in black subjects
solid bars), white subjects (open bars), and Asians (striped
ars) (adapted from data presented in references 99, 101, 106,
nd 116). WT, Wild type.
nation have been described which serve as both in vitro d
nd in vivo probes of activity. These include debriso-
uin and sparteine, as described previously, and the
idely used probe drugs dextromethorphan101 and
-metoprolol.102,103

Which alleles to determine. As illustrated in Fig 3,
here are notable differences in the distribution of the
ost common of these alleles in the 3 main ethnic

roups. It is clear that an efficient genotyping strategy
or any population of patients or normal volunteers has
o take ethnicity into account. Among white subjects,
ssessment of the most common alleles that result in
oss of function would require testing for the *4 allele
nd should include the *3, *5, *6, and *10 alleles
Table III). In addition, it may be valuable to test for the
41 allele among white subjects, in whom this reduced
ctivity variant is common.104-106

In addition, it is likely that an assessment of the
YP2D6*17 allele,106 prominent in West African107 and
lack populations, would improve the ability of any study
esigned to predict CYP2D6 metabolism in those popu-
ations. Likewise, assessment of the CYP2D6*10
llele108-111 should be key to the prediction of the
YP2D6 metabolism phenotype in Asian populations, in
hom this allele often has a frequency in the 70% range.

t is of note that both the *17 and *10 alleles are not
nockout alleles which remove functional CYP2D6 en-
yme activity and that their effect on phenotype is, there-
ore, reduced. As a result, the average rate of metabolism
y CYP2D6 is marginally slower in Asian populations,
ut there is a low incidence (in the 1%-2% range) of the
ategoric PM phenotype,101,109 as is the case in African107

nd black112 populations. Because the *17 allele is the
esult of a nonsynonymous SNP coding for an area near
he active site, substrate-dependent effects have been ob-
erved, and a dissociation of the control of debrisoquin,
parteine, and metoprolol metabolism by CYP2D6 in Ni-
erians has been described.113

Clinical relevance. The PM and ultrarapid pheno-
ypes of CYP2D6 differ from EMs by 5- to 15-fold if
easured by rates of metabolism or by ratios of parent

o metabolite concentrations, and so these represent the
most important phenotypes to investigators and cli-

icians who wish to use CYP2D6 genotyping to predict
he clinical effects of drugs. Assessment of the inter-
ediate metabolizer phenotype is difficult because it is

uantitatively close to the EM phenotype, there is clear
verlap between these 2 phenotypes in every study
ublished, and the change in prescribed dose that might
esult is, therefore, small.114 It follows that efforts to
redict the ultrarapid metabolizer, EM, or PM pheno-
ypes will be of most clinical value. Strategies to pre-

ict clinical outcome that use allele scoring strategies



m
s
i

C
p
p
w
c
c
v
i
u
i
p
e
w
d
o
r
S
o
e
g

C
c
w
p
e
t
t
n
e
a
C
c
p
i
o
p
p

U

d
t
r
5
o
l
c

t
l
fl
t

T
b
i
t
m
U
U
t
o

i
r
h
s
T
e
p

a
b
s
a
c
s
l
1
i
v
s
w

t
g
i
(
i
d
t
d
U
i
f
(
p
c

CLINICAL PHARMACOLOGY & THERAPEUTICS
2005;78(6):559-81 Pharmacogenetics of drug-metabolizing enzyymes: Workshop report 567
ay also be of value in some populations, as well as in
ituations where very accurate assessment of phenotype
s available to validate any prediction of outcome.115

A large number of drugs can be metabolized by
YP2D6. However, the drugs for which this ap-
roach will be most valuable will be those that are
redominantly metabolized by CYP2D6 or those in
hich metabolism to important, active metabolites is

atalyzed exclusively or primarily by CYP2D6. The
linical value of CYP2D6 genotyping will be most
aluable when it provides a significant incremental
mprovement over what can currently be predicted by
se of routinely available clinical tests. As a result,
ts impact will likely be greatest in oncology and in
sychiatry, in which the existing means of predicting
ffect are limited. It is difficult for care providers
ho treat patients who are depressed or have bipolar
isorder to predict in advance which antidepressants
r antipsychotics will work best in which patient,
esulting in significant morbidity and mortality rates.
imilarly, when the only assessment of the efficacy
f antitumor therapy is the return of metastatic dis-
ase, it is clear that public health could benefit
reatly from better methods of predicting outcome.
Conclusions. Although we have been aware of the

YP2D6 genetic polymorphism for more than a quarter
entury, it remains the case that there is no situation in
hich testing for this polymorphism is in routine clinical
ractice. That being said, CYP2D6 genotyping is now an
stablished and frequently used tool in drug development
hat is of great value in the determination of the effects of
his important polymorphism on the pharmacokinetics of
ew molecular entities which undergo metabolism by the
nzyme. In addition, FDA-approved testing is now avail-
ble, an increasing number of companies provide
YP2D6 genotyping under Good Laboratory Practice
onditions, and an increasing number of medical centers
rovide this service to patients under their care. It will be
ncreasingly important for physicians, pharmacists, and
ther care providers to be able to provide coherent thera-
eutic recommendations to patients with predetermined
harmacogenetic data.

GT1A1
UGT1A1 has been shown to metabolize various

rugs,37 including SN-38, the active metabolite of irino-
ecan,117 a cytotoxic agent approved for metastatic colo-
ectal cancer usually administered in combination with
-fluorouracil. (It is also commonly used off-label for
ther solid tumors.) Its use is limited by toxicity, including
ife-threatening neutropenia and associated infection, most

ommon on the every-3-week schedule. The other major a
oxicity, more problematic when it occurs, is severe or
ife-threatening diarrhea, necessitating either parenteral
uids or hospitalization (or both), which occurs more on

he weekly schedule.
Irinotecan’s disposition in humans is complex.118

he parent drug is inactive. A fraction is metabolized
y CYP3A4 and CYP3A5 (the latter being minor) to
nactive metabolite(s). It is hydrolyzed by carboxyles-
erases to SN-38, the active form. SN-38 is further
etabolized by glucuronosyltransferases, primarily by
GT1A1. In addition, SN-38 is a substrate for
GT1A9, UGT1A6, UGT1A7, and UGT1A10, al-

hough the clinical significance of variability in these
ther enzymes is not clear at this time.
Which alleles to determine. In patients treated with

rinotecan (weekly schedule), diarrhea appeared to cor-
elate with decreased glucuronidation.119 Other studies
ave shown that neutropenia (with the every-3-week
chedule) is correlated with the UGT1A1*28 genotype.
able IV provides a list of adequately sized studies
valuating UGT1A1*28 and irinotecan toxicity or
harmacokinetics.
UGT1A1*6, which only has 30% of the wild-type

ctivity, is consistently associated with neonatal hyper-
ilirubinemia in Asians. In one study in 85 Japanese
ubjects, *6 showed 90% effect of *28,120 whereas in
nother study in 118 Japanese subjects, no significant
orrelation between genotype and toxicity was ob-
erved.121 UGT1A1*60, which shows a higher preva-
ence in African populations (32% as compared with
4% in Asians or 9% in Europeans), is associated with
rinotecan pharmacokinetics and bilirubin levels in uni-
ariate analysis but not multivariate analysis.120 In a
econd study, UGT1A1*60 did not show a correlation
ith either irinotecan pharmacokinetics or toxicity.122

Conclusions. In summary, the existing data indicate
hat UGT1A1*28 is a valid biomarker (distinguishing 3
enotypes) for decreased UGT1A1 activity and for
ncreased irinotecan toxicity and should be measured
Table III) along with other clinical measures (eg, bil-
rubin levels) in treating patients taking irinotecan. Ad-
itional prospective studies with the UGT1A1*6 geno-
ype should be considered in Asian populations to
etermine its association with irinotecan toxicity.
GT1A1*60 should be evaluated further, particularly

n African populations, in which it has the highest
requency. In addition, the role of various transporters
multidrug resistance protein 2, organic anion trans-
orting polypeptide 1B1) in the disposition of irinote-
an will require further evaluation to better define vari-

bility in irinotecan toxicity.
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YP3A
Safe and efficacious treatment with CYP3A substrates

s sometimes hampered by the substantial degree of vari-
bility in hepatic and intestinal enzyme activity that exists
n the human population.130,131 Previous investigators
ave attributed much of the variability in basal or con-
titutive CYP3A activity to genetic sources.132 How-
ver, the search for mutations in the major functional
YP3A genes (CYP3A4, CYP3A5, and CYP3A7) that
ave a significant effect on oral drug bioavailability or
ystemic clearance has yielded mixed results.

CYP3A4 genotypes. Much of the effort has been
ocused on CYP3A4 because of the dominant role that
t plays in drug elimination. Numerous allelic variants
f CYP3A4 have been reported to the CYP allele Web
ite.133 One of the most common, CYP3A4*1B, repre-
ents a single base substitution in a putative response
lement (NFSE) found in the 5�-flanking region of the
ene. Some studies have linked this allelic variant to
ltered gene transcription and enzyme activity134,135;
owever, other groups have failed to find a clear asso-
iation at the in vitro136,137 and in vivo level.138-140

able IV. Summary of adequately sized studies of UG
etabolism or toxicity120-129

Study type
Measured

parameters

In vitro study with 44 microsomes Glucuronidation
Case-control study in 118

Japanese subjects
Toxicity

Prospective clinical study in 20
Asians

Neutropenia

AUC
Pharmacokinetic study in 65

Europeans (58 genotyped)
AUC (SN-38G/

SN-38)
Prospective clinical study in 51

Spaniards (with docetaxel)
Toxicity

Prospective study in 66 Americans Neutropenia

AUC
Pharmacokinetic study in 94

Europeans
AUC (SN-38G/

SN-38)
Pharmacokinetic study in 85

Japanese subjects (41
genotyped)

PK (SN-38G/
SN-38)

Clinical study in 75 Europeans
(with 5-fluorouracil)

Neutropenia

Diarrhea

Clinical study in 75 Spaniards Diarrhea

ANC, Absolute neutrophil count; SN-38G, glucuronide of SN-38; PK, phar
nterpretation of the CYP3A4 genotype-phenotype ac- t
ivity data is complicated by the presence of linkage
isequilibrium between the CYP3A4*1B allele and
ther SNPs found in the CYP3A gene locus, including
functionally significant mutation in the CYP3A5 gene

CYP3A5*3).141

A number of CYP3A4 coding mutations that result in
hanges to the enzyme structure have also been discov-
red, and some (CYP3A4*2, CYP3A4*17, CYP3A4*18)
ppear to affect catalytic function in vitro.132 However,
he frequency of these variations is relatively low, and
hus the association with altered in vivo metabolic
unction remains undetermined.

CYP3A7 genotypes. Although the expression of
YP3A7 in humans is repressed after birth142 and its

evel in the adult liver is much less than that of
YP3A4,143 an unusual mutation in its 5�-flanking

egion may confer significant expression in some indi-
iduals. A swap of 60 base pairs that includes the
roximal pregnane X receptor response element of the
YP3A4 gene into the CYP3A7 gene (comprising 6
ase substitutions) has been associated with higher
evels of CYP3A7 messenger ribonucleic acid in both

28 and irinotecan/SN-38 pharmacokinetics and

Outcome Reference

6/6 � 6/7 � 7/7 129
7/7 higher risk for grade 4 leukopenia

or diarrhea than 6/7 and 6/6
121

ANC nadir 7/7 2.5-fold lower than
6/6

123

AUC 7/7 3.9-fold higher than 6/6
No significant correlation 124

No genotype-dependent differences in
toxicity

125

7/7 higher risk (9.3-fold) in grade 4
leukopenia

122

7/7 lower AUC (1.8-fold) than 6/6
6/6 � 6/7, 7/7 126

6/6 � 6/7 � 7/7 120

7/7 � 6/7 � 6/6 127

No significant genotype-dependent
correlation

7/7 � 6/7 � 6/6 128

ics.
T1A1*

rate
he liver141,144 and the small intestine.144 The frequency
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f the variant allele is relatively low (2% in white
ubjects and 6% in black subjects), but it may contrib-
te to an extreme phenotype with a higher than average
etabolic clearance of CYP3A substrates that has been

een in large populations.131

CYP3A5 genotypes. Only a fraction (approximately
0%-25%) of livers from donors with white European
ncestry express a level of CYP3A5 protein that can be
eadily detected by Western blot analysis.145 The pri-
ary genetic basis for this distinctive phenotype is the

esult of a single SNP found in intron 3 of the CYP3A5
ene that causes aberrant messenger ribonucleic acid
plicing and predicted truncation of the CYP3A5 pro-
ein. Additional mutations that are more common in
opulations of African ancestry (CYP3A5*6 and
YP3A5*7) can also contribute to the low-expression
henotype.141,146 A larger percentage of Africans and
lack subjects express the CYP3A5 enzyme (45%-
5%) than do white subjects, whereas the frequency in
hinese subjects is predicted to fall in between.131

The presence of CYP3A5 in the hepatic and intestinal
icrosomal fractions has been associated with increased
etabolic activity toward some but not all CYP3A4 sub-

trates.147 Tissues from donors with 1 or 2 copies of the
ild-type CYP3A5*1 allele exhibit an intrinsic clearance

hat can be 25% to 100% higher than that from donors
omozygous for the CYP3A5*3 allele, although consider-
ble interindividual variability unrelated to the CYP3A5
enotype exists. The most convincing evidence to suggest
hat the CYP3A5*3 mutation affects drug disposition in
ivo comes from studies of tacrolimus kinetics in organ
ransplant patients. Multiple groups of investigators have
ound that individuals carrying the CYP3A5*1 allele have
ower trough blood concentrations (normalized for dose)
han do CYP3A5*3 homozygotes.149-152 The simplest in-
erpretation of the data is that patients with a functional
YP3A5 allele have a higher capacity to metabolize ta-
rolimus, a known CYP3A5 substrate,153 and that this
ecessitates a higher oral dose to achieve blood levels
ithin a targeted therapeutic range. However, because

herapeutic blood level monitoring is performed routinely
n these patients to contend with the variability of genetic
nd nongenetic (eg, induction, inhibition, pathophysio-
ogic) origins, it is not clear whether genetic testing will
rove to be necessary. Given that patients with the
YP3A5*1 allele were more likely to require a longer

ime after transplantation to have a therapeutic blood
oncentration than patients homozygous for the
YP3A5*3 allele,154 a prospective genetic test could re-
uce the time needed to attain a stable and effective blood

oncentration, resulting in a favorable cost/benefit ratio. s
The effect of the CYP3A5*3 polymorphism on the
isposition of other CYP3A substrates has been less
onclusive. For example, with respect to the CYP3A
robe substrate midazolam, some investigators have
eported the predicted higher metabolic phenotype for
ndividuals carrying the CYP3A5*1 allele,155,156 but
thers have not.157-159 It is not clear what distinguishes
idazolam from tacrolimus, because both drugs are

xcellent substrates for CYP3A5 and CYP3A4.148,153 It
s possible there are additional factors yet to be de-
cribed that affect the in vivo disposition of one sub-
trate but not the other. For example, Katz et al160 have
uggested that saturation of intestinal CYP3A4 activity
ay be a necessary prerequisite for the CYP3A5 phe-

otype to become apparent.
In summary, although genetic mutations in the CYP3A

enes can affect the metabolic fate of clinically important
rugs, it remains to be seen whether genetic testing will
rove to be a cost-effective approach to individualizing
rug therapy. Of the variant alleles that have been char-
cterized to date, mutations in the CYP3A5 gene appear to
e the most promising (Fig 4).

BCB1 (MDR1)
Until recently, the role of transporters in drug dispo-

ig 4. Dose-adjusted trough blood concentration of tacroli-
us (in nanograms per milliliter per milligram per kilogram

ody weight) according to CYP3A5 intron 3 polymorphism,
6986A (CYP3A5*3/*3, n � 39; CYP3A5*1/*3, n � 9; and
YP3A5*1/*1, n � 2). Blood concentrations are adjusted to

he last dose. The mean values are indicated. (Reprinted with
ermission from Haufroid V, Mourad M, Van Kerckhove V,
awrzyniak J, De Meyer M, Eddour DC, et al. The effect of

YP3A5 and MDR1 [ABCB1] polymorphisms on cyclospor-
ne and tacrolimus dose requirements and trough blood levels
n stable renal transplant patients. Pharmacogenetics 2004;14:
47-54.)
ition and response received limited attention relative to
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hat of drug-metabolizing enzymes.161 The ABCB1
multidrug resistance 1 [MDR1]) gene product
-glycoprotein is the most widely studied drug trans-
orter and has a recognized role in the bioavailability
nd biliary, intestinal, and renal excretion of numerous
rugs.162-164 P-glycoprotein is also a major component
f the blood-brain, blood-testes, and maternal-fetal bar-
iers and limits both therapeutic and toxic responses of
rugs in the central nervous system, testes, and fetus.
iven the broad substrate specificity of P-glycoprotein,
ariability in the expression or function of this trans-
orter is predicted to have a significant impact on drug
isposition and response.
Genetic variation in ABCB1 has been reported by

umerous groups, and more than 50 variant sites are
isted at the Pharmacogenetics and Pharmacogenomics
nowledge Base Web site.165-170a Common coding re-
ion variants have been reported for the coding region
nd 5�-untranslated region,165,170 and there are signifi-
ant differences in allele frequencies across various
thnic groups. For example, the nonsynonymous
677G�T allele is found at a frequency of 40% to 46%
n white subjects, Asian Americans, and Mexican
mericans and only 10% in black subjects. In contrast,
421T�A is an African American–specific variant
ound at a frequency of 11% in this population.

Investigation of the functional consequences of
-glycoprotein coding SNPs suggests that the common
la893Ser variant has little effect on transporter func-

ion. Unfortunately, no validated assay for measuring
-glycoprotein function exists, and variability in cell
ulture models and transport assays makes these data
ifficult to interpret. In a single report the 893Ser
ariant of P-glycoprotein showed a significant increase
n function by use of digoxin as a substrate.170 How-
ver, with the use of a variety of substrates, other
nvestigators have failed to find any difference in func-
ion between the reference and 893Ser variant of
-glycoprotein.164,171,172 To date, there are no func-

ional data on the common African American
er1141Thr variant of P-glycoprotein.
Despite the lack of functional data supporting differ-

nces in transporter function for P-glycoprotein coding
egion variants, numerous clinical studies have been
eported on the association of ABCB1 SNPs with phar-
acokinetic, pharmacodynamic, and disease risk end-

oints.162,163 An initial report by Hoffmeyer et al168 in
000 provided evidence that white subjects who are
omozygous for the synonymous 3435C�T variant
ave decreased levels of intestinal P-glycoprotein and a
orresponding increase in digoxin maximum plasma

oncentration values. However, follow-up studies have T
een inconclusive, with increased,173-175 de-
reased,176,177 and unchanged178,179 digoxin levels be-
ng reported for individuals with the 3435TT genotype.
imilar discordant data exist on the effect of ABCB1
enotype on the pharmacokinetics of fexofena-
ine,170,180 nelfinavir,181,182 cyclosporine (INN,
iclosporin),183-193 and tacrolimus.183,194-199 An in-
riguing association between ABCB1 SNPs and drug-
esistant epilepsy has recently been reported; however,
hese findings have not been confirmed in all subse-
uent studies.190-203 Clearly, further investigation is
eeded to define the impact, if any, of ABCB1 poly-
orphisms on drug disposition and response.
In summary, despite extensive investigation during

he last 4 years, there is a lack of evidence supporting
clear association between ABCB1 genotype and clin-

cal drug response or toxicity. Several hurdles related to
he in vitro and in vivo study of transporter function
eed to be overcome before this field will advance. In
ontrast to drug metabolism, the study of drug trans-
orters is limited by the availability of specific and
ensitive transporter substrates and inhibitors. Whereas
igoxin and fexofenadine are two of the best-
haracterized P-glycoprotein substrates, there is no sin-
le pharmacokinetic parameter that robustly reflects
ransporter function. This is one possible explanation
or the lack of an in vivo–in vitro correlation for
-glycoprotein activity. Well-validated systems for the
unctional analysis of transporters are also not avail-
ble, making it difficult to correlate changes in deoxyri-
onucleic acid sequence with alterations in transporter
unction. The haplotype structure of ABCB1 is com-
lex, and consideration of haplotypes instead of single
NPs is likely to more accurately reflect transporter
unction.165,169,202,204,205 Therefore collection of
BCB1 genotype-haplotype information in drug devel-
pment studies is currently considered exploratory. An
ngoing analysis of genotype-haplotype data coupled
o pharmacokinetic, pharmacodynamic, and toxicologic
henotypes collected during drug development will fur-
her our understanding of the importance of genetic
ariation in ABCB1 and other drug transporters in de-
ermining variability in drug response.

ISCOVERY OF NEW PHARMACOGENETIC
ARIANTS DURING DRUG DEVELOPMENT
The use of pharmacogenetics in IND and NDA sub-
issions has until now focused largely on “known

alid” or “probable valid” biomarkers.206 The use of
harmacogenetics in this way requires little or no novel
iscovery of gene variants that influence drug response.

here are many indications, however, that in the near
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uture applications of pharmacogenetics in drug devel-
pment will include an increasing emphasis on explicit
fforts either to refine probable or exploratory biomar-
ers or to identify novel ones.
There are a number of contexts in which this can be

xpected to occur. In the simplest case this may take the
orm of refining exploratory biomarkers already suggested
y earlier work, for example, variants in the ABCB1
ene.163 If there were reason to be concerned about the
ole of variation in this gene, it would not be sufficient to
how no association with 3435C�T and not consider
ariation in the gene any further. Similarly, it would be
qually insufficient to find association with the 3435C�T
ariant and then propose it as diagnostic for drug response
ecause this polymorphism may not be causal. If a marker
s used diagnostically instead of the causal variant, there is
very reason to believe that it would not work consistently
cross ethnic or racial groups because of varying patterns
f linkage disequilibrium. The example of situations such
s CYP2D6, in which the simple approach is often justi-
ed (eg, checking for association with null or reduced
ctivity genotypes), should not inform the approach taken
n situations in which our knowledge of the role of vari-
tion in the relevant gene is very limited and quite possi-
ly incorrect. Instead, these situations require a systematic
iscovery effort. At the next level of complexity, we can
magine situations in which a variable response to a com-
ound has been observed but relevant valid or even prob-
ble biomarkers are not already known.

Finally, an argument could be made that some
traightforward discovery efforts should be carried out
ven if the observed pattern of variation in a phase III
rial did not present a compelling case for pharmaco-
enetic investigation. Just because genetics is not
eeded for drug development or approval, it does not
ollow that genetics is irrelevant in the effort to clini-
ally optimize the use of the medicine. The strict in-
lusion and exclusion criteria of trials, as well as the
etailed response information normally collected,
resent important opportunities for research that often
re not easily recapitulated once a drug goes to market.

For these reasons, we may assume that pharmacoge-
etics during drug development will include an increasing
ffort to discover new variants. This raises the question of
ow such discovery will be carried out, as well as how it
ill be interpreted. The first question is whether to focus
n candidate genes (and pathways) or genome-wide anal-
ses, which are slowly becoming feasible. Although
enome-wide approaches will have their uses, it is possi-
le to make a strong case that the obvious candidate
enes, such as the drug target (and associated pathway)

nd genes encoding the major metabolizing enzymes, as t
ell as transporters, should be investigated as a priority
or all prescription medicines.207

As one of many possible examples illustrating can-
idate gene approaches in pharmacogenetics, Tate et
l208 looked for genetic contributors to dose require-
ents of the antiepileptic drugs carbamazepine and

henytoin. The phenotype considered was the maxi-
um exposed dose during the regular clinical use of the
drugs. To identify gene variants associated with dose,
ate et al looked at low-activity variants in CYP2C9
nd the 3435 variant in the ABCB1 gene. They also
onsidered the SCN1A gene, one of the genes encoding
he �-subunit of the voltage-gated sodium channel, the
arget of both drugs. No common functional variation
as then known in the gene, so the authors used a
aplotype-tagging approach.208,209

The CYP2C9*3 allele was found to be significantly
ssociated with the maximum exposed dose of phenyt-
in, whereas one of the SNPs selected as a tag was
ound to be significantly associated with the maximum
xposed dose for both carbamazepine and phenytoin.
his SNP was then shown to fall in the penultimate site
f the consensus sequence for the 5� splice donor site of
n alternative (presumptively neonate) form of exon 5
ot previously recognized. This example illustrates that
etailed haplotype analyses of obvious candidate genes
re likely to identify gene variants relevant to drug
esponse and increases the case for more discoveries
uring the development of new medicines.
Whether the approach is based on candidate genes or,

ltimately, the whole genome, there are 2 methods that
ay be used for comprehensive efforts to identify new

ene variants which are associated with drug responses,
ften referred to as direct (or sequence-based) and indirect
or map-based).210 In the direct approach exhaustive dis-
overy of variants is performed in genes or gene regions
f particular relevance (eg, exons of the target of the drug,
elevant transporters) in either all or a subset of the rele-
ant individuals. In the indirect approach a set of variants
re selected in the gene to represent other variants through
inkage disequilibrium or the nonrandom association of
lleles at different loci. If the focus is on well-known
olymorphisms as opposed to one of these more compre-
ensive approaches, the study should be referred to as
andidate polymorphism instead of candidate gene, which
mplies that variation in the gene has been comprehen-
ively assessed (in some fashion).

Linkage disequilibrium mapping has been exten-
ively reviewed,211,212 and we will not reprise those
etails here. Instead, we note a number of points of
articular relevance in pharmacogenetics. First, haplo-

ype mapping methods should now be viewed as suf-
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cient to represent common variation in genes of in-
erest by use of tagging SNPs selected in a reference
esource such as that provided by the HapMap
roject.213 As a rough indication of the efficiency that
ay be expected, Ahmadi et al214 considered 2100

ilobases of sequence composed of 55 important drug-
etabolizing enzymes. It was found that only 179 and

56 tagging SNPs are sufficient to represent all of the
ommon variations in these genes in European and
apanese population samples, respectively, with a very
odest loss of power in comparison with direct assay

f all common SNPs in the region (SNPs with minor
llele frequency greater than approximately 0.05).
hen it is noted that there are 4000 such common

NPs predicted in relevant sequence intervals, the mag-
itude of the economy provided by haplotype tagging
ecomes readily apparent.
The important qualifications here are that (1) rare

ariants are unlikely to be well represented and (2) the
thnic structure of phase III populations will need to be
aken into account, because tagging SNPs do not trans-
er directly across population or ethnic groups. When
hmadi et al214 tested their tagging SNPs in an inde-
endent population sample (ie, individuals drawn from
berdeen, Scotland, for tags selected in North Europe-

ns as represented in CEPH [The Foundation Jean
ausset-Centre d’Etude du Polymorphisme Humain]),

t was found that all common SNPs were well repre-
ented. The SNPs with lower minor allele frequencies,
owever, were very poorly represented. This would
mply that it may often be necessary to resequence
enes of particular significance.
Complications related to ethnic or racial diversity
ay prove less of a long-term concern. For example,
hmadi et al214 selected a set of SNPs that would
erform well in both the Japanese and the European
opulation samples. They found that only a modest
ncrease was required to define a set which would work
ell across individuals drawn from both groups. Given

he rapidity with which many decisions need to be
ade during the drug development process, there may

e an argument for the creation of panels of such
cosmopolitan” tagging SNPs for genes of particular
harmacologic significance. This way the panel could
imply be applied as opposed to being tailored to the
articular makeup of each trial population.

UMMARY
Pharmacogenomic data can facilitate our understand-

ng of the sources of variability in drug response and
an potentially lead to improved safety and efficacy of

rug therapy for individual patients. Through various t
nitiatives,4,5 the FDA is encouraging drug developers
o apply the rapidly evolving pharmacogenomic tools
nd integrate these data into the evaluation of patient
ariability. The FDA has clarified when these data are
equired submissions and when they are exploratory
ata that can be shared via a newly established process
voluntary genomic submission).6,7

Increasingly, pharmacogenetics and genomic infor-
ation are being included in drug labeling before mar-

et approval (eg, trastuzumab [Herceptin; Genentech
nc, South San Francisco, Calif], atomoxetine [Strat-
era], and voriconazole [Vfend])21 or after approval,
hen new information becomes available (eg, thiorid-

zine [Mellaril], 6-mercaptopurine [Purinethol], and
rinotecan [Camptosar]),21 so that health care providers
nd patients have updated information on how genom-
cs, along with other factors (age, gender, hepatic, renal
mpairment, concomitant medications, and others), can
nfluence individual responses. Various genomic tests
re being developed for use with the previously men-
ioned or other drug products. For example, a recently
pproved chip provides genotyping of CYP2D6 and
YP2C19.217 Another test was approved to provide
enotyping of UGT1A1.218

There are many challenges to the effective transla-
ion of pharmacogenomic information to clinical prac-
ice, and they need to be addressed before the full
otential of pharmacogenomics to optimize patient
herapy can be realized. This commentary addresses
ne of the critical issues in the collection of pharma-
ogenomic data. Defining what basic polymorphic al-
eles to evaluate in various ethnic or racial groups is
mportant for common, known valid metabolic biomar-
ers such as CYP2D6, CYP2C9, CYP2C19, and
GT1A1 (Table III). It is also timely to discuss emerg-

ng data for exploratory biomarkers (eg, CYP3A4/3A5,
BCB1, or methods involving tagging SNPs) because

heir correlations with clinical response have been in-
reasingly evaluated during drug development.

Other clear challenges include the following: educa-
ion of health care providers and patients, insurance
overage of pharmacogenomic tests, the availability of
obust and valid tests, and the need for an interdisci-
linary counseling team approach to address complex
ssues with individual patients. Many individuals and
rganizations are working to remove these barriers to
ull use of pharmacogenomics to improve public health.

Drs Flockhart, Goldstein, Huang, Kroetz, and Thummel have no
onflict of interest. Dr Ratain serves as a consultant to Prometheus
herapeutics and Diagnostics, San Diego, Calif, and is a coinventor
n multiple issued and pending patents related to pharmacogenetic

esting. Dr Milos is an employee of Pfizer and holds stock options in
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